If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-193x+2100=0
a = 1; b = -193; c = +2100;
Δ = b2-4ac
Δ = -1932-4·1·2100
Δ = 28849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-193)-\sqrt{28849}}{2*1}=\frac{193-\sqrt{28849}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-193)+\sqrt{28849}}{2*1}=\frac{193+\sqrt{28849}}{2} $
| 1/2x-1/4=1/8 | | -12+18=2(x+7) | | 2/36y=15/6 | | 5=0.2x-0.4x-2 | | -2p^2+3p+36=0 | | 9=-3y+7y+7 | | (c+13)=18c+2 | | 4w-28-6w=-38 | | z=5-2/3 | | .56=2x-19 | | -n-(-1)=-22 | | 3.38n+n=2.78 | | 3x(x^2-4x2)=0 | | 2x+2/5=9/2 | | 3/4y-4=2 | | 5x+5/4=5/2 | | 2/5x+8/5=3 | | 7/5x+4/5=8 | | x+18=-5x | | -8u–6=-7u | | (X+5)^2=4x^2 | | 0.8(x-90)+0.2x=97 | | 20t-0.8t^2=(125/2) | | 3x-11/7-2=0 | | 8–p=8–4p | | 4x-(9x+3)=2x-38 | | 4j+1=8+j+4j | | 18x+(-27)=2x | | 0.2(6x+1)3.6=0.5x9 | | -3(4n-7)=-39 | | -9w-7=5-3w | | -3(4n-7)=-38 |